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E-mail: jcline@hep.physics.mcgill.ca, keshav@hep.physics.mcgill.ca,

firouz@hep.physics.mcgill.ca

Abstract: Back-reaction effects can modify the dynamics of mobile D3 branes moving

within type IIB vacua, in a way which has recently become calculable. We identify some of

the ways these effects can alter inflationary scenarios, with the following three results: (1)

By examining how the forces on the brane due to moduli-stabilizing interactions modify

the angular motion of D3 branes moving in Klebanov-Strassler type throats, we show how

previous slow-roll analyses can remain unchanged for some brane trajectories, while being

modified for other trajectories. These forces cause the D3 brane to sink to the bottom

of the throat except in a narrow region close to the D7 brane, and do not ameliorate the

η-problem of slow roll inflation in these throats; (2) We argue that a recently-proposed back-

reaction on the dilaton field can be used to provide an alternative way of uplifting these

compactifications to Minkowski or De Sitter vacua, without the need for a supersymmetry-

breaking anti-D3 brane; and (3) by including also the D-term forces which arise when

supersymmetry-breaking fluxes are included on D7 branes we identify the 4D supergravity

interactions which capture the dynamics of D3 motion in D3/D7 inflationary scenarios.

The form of these potentials sheds some light on recent discussions of how symmetries

constrain D term interactions in the low-energy theory.
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1. Introduction

Of late there has been considerable interest in understanding the dynamics of time-

dependent string configurations largely motivated by their possible applications to cosmol-

ogy, particularly to the search for inflation. The resulting dynamics has begun to produce a

number of interesting scenarios for inflationary constructions, such as the brane-antibrane

mechanism [1]–[6], D3/D7 models [7, 8], modular inflation [9] and other scenarios [10]–[12].

The study of the motion of branes within type IIB geometries with fluxes has been

of particular interest, given the progress towards modulus stabilization which these ge-

ometries provide [13]–[16]. The goal of these studies is to improve the control over the

approximations being made, in an effort to more reliably tie the time-dependent behaviour
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to the properties of real string vacua. What makes these studies difficult is the necessity

of exploring nonsupersymmetric configurations when exploring time-dependent solutions,

with the loss of control over the corrections to the leading features that this supersymmetry

breaking entails.

The greater calculational control offered by supersymmetry makes it advantageous to

keep any supersymmetry breaking parameterically small, putting a premium on construc-

tions which can be regarded as only small deviations from the supersymmetric limit. In

particular, this makes it preferable not to break supersymmetry with antibranes, since these

necessarily require that supersymmetry be nonlinearly realized.1 This motivates identify-

ing dynamical situations where supersymmetry breaks spontaneously, but in a way which

allows a description of the low-energy dynamics purely in terms of a 4D supergravity. The

motion of a mobile, or itinerant, D3 brane moving in the presence of background fluxes and

the fields generated by various D7 and O7 sources provides an attractive class of systems

of this type.

In this paper we use recent calculations [18, 20] of the back-reaction of such an itinerant

D3 brane on the low-energy gauge coupling functions to identify some of the forces acting on

the mobile D3. The first of these forces is described in the low-energy theory by an F -term

potential [18], which arises because the low-energy superpotential acquires a dependence

on the low-energy gauge coupling function due to nonperturbative effects. These can arise

either through Euclidean D3-branes wrapping a 4-cycle of the Calabi-Yau (CY) [21], or by

gaugino condensation [22] of an unbroken gauge group living on a stack of D7 branes which

also wrap a 4-cycle in the CY. The potential induced in this way was identified some time

ago [3] as the source of an η problem for inflationary models involving mobile D3 branes

moving in the throat; ignorance of its detailed form left open the possibility [3] – [6] that

inflation could nonetheless be achieved by adjusting inflaton-dependent corrections to the

superpotential. But this begged the question of whether string theory really provides the

desired kind of superpotential corrections.

Progress toward computing this superpotential more explicitly was recently made by

ref. [18], who noted that the form of the superpotential corrections can be explicitly calcu-

lated for branes moving within a Klebanov-Strassler (KS) throat [23, 24], if the wrapped

4-cycle is itself within the throat. In section §2 we use this calculation to compute the

motion of a mobile D3 brane in the special Ouyang embedding [25], and find that the

resulting superpotential vanishes when minimized along the angular directions which pa-

rameterize the 5D T 1,1 submanifold of the throat. We conclude that the superpotential

by itself therefore does not counteract the η problem for motion along these directions.

Furthermore, the forces which push the D3 brane in the angular directions are too steep

to provide new slow-roll mechanisms themselves.

An additional force on the D3 brane also arises at the same order as the superpotential

correction, due to the back-reaction of the D7 brane on the background dilaton profile [25].

We find in §3 that this force competes with that due to the superpotential in such a way

as to change the stable point of the D3 motion in the angular directions in the throat.

1Or explicitly broken, which amounts to the same thing for gauge symmetries [17].
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However including these corrections does not allow one to fine-tune away the η-problem of

slow roll inflation, since they provide a force on the D3 brane which is in the same direction

as the force which gives rise to the η problem. On the other hand, we show that because

the dilaton correction increases the potential energy of the D3, it can be used to uplift the

vacuum to de Sitter or Minkowski space, even in the absence of an antibrane. This new

possibility may allow better control over the corrections to this picture inasmuch as it does

not rely on the introduction of badly-broken supersymmetry via antibranes.

Finally, in section §4 we use the modified gauge kinetic functions of ref. [18] to compute

the force on a mobile D3 brane which arises when supersymmetry-breaking fluxes are

introduced on the D7 branes, due to the partial failure of the BPS cancellations amongst

the interbrane forces. This type of force has been argued to be described by a D-term

potential [26]–[28], whose form has also been recently identified by other workers [29]. We

identify the F and D terms which describe the motion of a D3 in the special case that the

internal dimensions have the form of a product of a 4-cycle with two toroidal (or orbifold)

dimensions (such as for K3 × T 2/Z2). Besides expecting these results to be pertinent

for constructing new inflationary scenarios, we find they also provide useful illustrations of

how the low-energy theory implements some of the symmetries which arise when discussing

D-term potentials.

1.1 D3’s and D7’s in type IIB vacua

In type IIB compactifications the perturbations to the strength of gauge couplings on

nearby D7 branes due to the presence of itinerant D3 branes within the bulk have recently

been calculated in two independent ways. They were first obtained as loop-generated

threshold effects within an open-string picture [20], with the result in some instances re-

confirmed by performing a back-reaction calculation within the closed-string picture [18].

The background spacetimes which arise within warped type IIB compactifications pre-

serving N = 1 supersymmetry in four dimensions [13, 14] have the general form

ds2 = h−1/2(y) gµν(x) dxµdxν + h1/2(y) g̃mn(y) dymdyn , (1.1)

where h(y) denotes the warp factor. Given this metric, the gauge term for a massless gauge

field situated on a stack of coincident space-filling D7 brane becomes

Sg = −1

4

∫

Σ
d4x

√−g4 gµνgλρGabF
a
µλF b

νρ , (1.2)

where the matrix Gab governs the effective gauge coupling strength, and is given semiclas-

sically by the following warped volume

Gab = T7V
w
Σ δab ≡ T7 δab

∫

Σ
d4y

√

g̃4 h , (1.3)

where a, b label gauge group generators, Σ denotes the 4-cycle wrapped by the 7-brane in

the internal 6 dimensions and T7 ∝ α′2T7 is proportional to the 7-brane tension.

For compactifications which preserve N = 1 supersymmetry in 4D, supersymmetry

dictates that Gab must be the real part of a holomorphic quantity when it is viewed as
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a function of the moduli which appear as fields within the low-energy 4D theory. For

instance, if we follow in this way the dependence on the volume modulus for the internal

dimensions, g̃mn = e2u gmn, we see that Gab ∝ e4u δab. In the absence of the itinerant D3

branes of interest below, this is indeed the real part of a holomorphic function because it

is related to the holomorphic volume modulus, ρ, by

e4u = ρ + ρ . (1.4)

D3 perturbations to D7 gauge couplings

When identifying forces acting on the D3’s our interest is in how the above expressions

respond to the presence of a perturbing mobile D3 brane situated at a point ym = zm in

the bulk, since we wish to follow how the low-energy 4D theory depends on the position

modulus, zm. From the microscopic point of view, this involves determining how the the

quantity Gab responds to the back-reaction of the 10D geometry to the 3-brane’s position.

Gab depends on this back-reaction because the gauge couplings depend on the volume of the

cycle which the D7 wraps, and this becomes corrected by the change in the bulk geometry

due to the presence of the itinerant D3 brane.

As was recently emphasized [18], the holomorphy of this back-reaction enters in two

ways: through perturbations to the volume, e4u, and to perturbations to h. Although both

of these perturbations introduce nonholomorphic contributions to Gab, these contributions

cancel to leave a holomorphic brane-dependent contribution to the gauge kinetic function:

Gab ∝ δab Re f with f = ρ + F (z), in agreement with the earlier arguments of [20]. The

quantity F (z) here represents a suitable cycle average of the holomorphic part of the

appropriate Greens function which governs the perturbations δe4u and δh.

1.2 Forces on itinerant D3 branes

Although all static forces cancel (by definition) between an itinerant D3 brane and the other

branes in a lowest-order supersymmetric construction, typically this no longer remains true

once all corrections are taken into account. For sufficiently slow motion the dynamics

generated by these forces can be described within a low-energy effective 4D theory, whose

comparative simplicity is often a prerequisite for being able to fully analyze the motion.

Furthermore, provided that the size of the supersymmetry breaking associated with the

forces is kept small enough the result must be a particular kind of N = 1 4D supergravity.

An approximately supersymmetric 4D limit of this type is particularly powerful because

of the control it provides over the approximations underlying the compactification which

leads to the effective 4D Lagrangian.

The key to understanding the 4D supergravity formulation lies with the gauge kinetic

function given in the previous section, which have the generic form Gs
ab = T7V

i
Σ δab

(

fs + fs

)

with

fs(ρ, z) = ρ + Fs(z) . (1.5)

Here the subscript ‘s’ labels the relevant D7 brane on which lives the corresponding massless

gauge field. This dependence of gauge couplings on D3 brane positions gives rise to two

kinds of forces of this type which are of particular interest.
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F -terms and volume-stabilization forces

There are forces on the D3 brane arising from any dynamics (like gaugino condensation or

D3 instantons) which stabilize the various moduli of the bulk geometry. These forces could

be succintly calculated from the superpotential, giving rise to the interaction potentials in

the system.

The interaction potential generated in 4D by modulus stabilization is incorporated by

using the kinetic function, eq. (1.5), within the standard superpotentials which are used in

the literature to describe the gaugino condensation (or D3 instanton) which stabilizes the

relevant moduli [15, 18, 22]:

W = W0 +
∑

s

As exp
[

−asfs(ρ, z)
]

. (1.6)

Here the constant W0 expresses the effects of any supersymmetry-breaking amongst the

higher-dimensional fluxes which stabilize some of the moduli, while the exponential term

contains the influence of gaugino condensation (or the like) on various D7 branes, and

involves the dependence on the D3 position due to the back-reaction of the D3 onto the

relevant gauge coupling strengths. The quantities As and as are z-independent constants

which are calculable given the details of the underlying physics.

D-terms and direct interbrane forces

A supersymmetry-breaking flux localized on any of the branes also introduces a direct

interbrane force, independent of the stabilization of bulk moduli. It does so because the

breaking of supersymmetry ruins the BPS cancellations among the long-range bulk forces

corresponding to the exchange of massless closed-string states. This typically leads to an

interbrane potential which varies near a source brane like r2−d, where d counts the number

of transverse dimensions. (For d = 2 the potential becomes logarithmic.) It gives rise to

the attractive force which is used in most brane-antibrane [2] and D3/D7 [7, 8] inflationary

analyses.

A similar argument can be used to incorporate the effects of imperfect cancellation of

bulk forces due to supersymmetry-breaking fluxes localized on various branes. To this end,

imagine turning on a background gauge field, Fmn, on a 7-brane, which at the classical

level contributes a 4D Einstein-frame action of the form

Sf = −T7

∫

d 4x
√

g4 H , (1.7)

where

H =

∫

Σ
d4y

√
g4 e−12uh−1gmngpqFmpFnq (1.8)

If the fluxes involved break supersymmetry by a sufficiently small amount, then it

has been argued [26]–[28] that such a flux term contributes a D-term potential to the

low-energy effective 4D supergravity, of the form

VD =
1

2
GabDaDb , (1.9)
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where Gab is the inverse of the matrix, Gab, of holomorphic gauge-kinetic functions, and the

sum is over the generators of the group gauged by the massless spin-1 particles. Here

Da = ξa + Da (1.10)

where Da = ∂iK(ϕ,ϕ)[taϕ]i represents the D-term contribution of any charged scalar

matter fields in the low-energy theory, and ξa represents a field-dependent Fayet-Iliopoulos

(FI) term [30], which can only arise for U(1) factors of the gauge group.

2. D3 dynamics in warped throats

We next turn to a more detailed exploration of the implications of these forces for the

specific case of D3 motion in the strongly warped region of the internal geometry. The

internal geometry will turn out to be more complicated than the simple deformed conifold

case studied earlier. In fact the SUSY breaking for our case will be intimately tied up with

some specific features of the internal geometry. In the following section we will elaborate

this story.

2.1 Internal geometry and supersymmetry breaking

We therefore begin by analysing the precise background metric for our case. In terms

of eq. (1.1) we aim to determine g̃mn that would include the backreactions from the D7

branes, D3 branes and fluxes, as well as some controlled nonperturbative effects such as

gaugino condensates on the D7 branes. The warp factor h appearing in (1.1) already takes

into account some of these effects, but there are in addition some subtle changes to the

standard deformed conifold background that are responsible for breaking supersymmetry

in our case. In fact we soon argue that even after we switch off the nonperturbative

SUSY-breaking effects, the resulting background still breaks supersymmetry because the

backreactions from the D7 and the D3 branes do not allow primitive three-form fluxes in

this geometry.

The three-form fluxes are the H3 = HNS and F3 = HRR which would satisfy the

equations of motion if G3 ≡ F3 + τH3 is imaginary self-dual (ISD) where τ is the axio-

dilaton. We can view the RR component of G3 as coming from a dual theory with wrapped

D5 branes.

The metric now can be computed using various arguments. In the absence of itin-

erant D3 branes, the background with D7 branes and fluxes could be supersymmetric.

Ouyang [25] has computed the metric of D7 branes with fluxes on a Klebanov-Tseytlin

type geometry [31] by regarding the D7 branes as probes in the background. The final

metric therein has an overall warp factor h (much like (1.1)) with g̃mn being given by

the Klebanov-Tseytlin metric [31]. However there are two shortcomings: one, the geom-

etry should be given by a full F-theory picture, and two, the metric g̃mn should be the

Klebanov-Strassler type metric [24]. These shortcomings are not very severe as long as we

are away from the tip of the Klebanov-Strassler throat, and consider the geometry only

in the neighborhood of one D7 brane. On the other hand, once we try to incorporate all
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the branes the global geometry becomes very complicated and we can only infer the local

picture in certain cases [32].

Here we try to address the noncompact limit of our global geometry when additional

D3 branes are also incorporated into the picture. From the considerations of [32] and [33]

(see also [40]) the metric of the internal space looks like:

ds2 = F1 (e2
1 + e2

2) + F2

2
∑

i=1

(ε2
i − 2beiεi) + v−1(ε2

3 + dr2) , (2.1)

where Fi are some functions of the radial coordinate r, (v, b) are parameters, and (ei, εi)

are defined as

e1 = dθ1, e2 = −sin θ1dφ1 ,

ε1 = sin ψ sin θ2dφ2 + cos ψ dθ2 ,

ε2 = cos ψ sin θ2dφ2 + sin ψ dθ2 ,

ε3 = dψ + cos θ1dφ1 + cos θ2dφ2 . (2.2)

We see that the background is neither Klebanov-Tseytlin nor Klebanov-Strassler because

there are two two-spheres — given by
∑

i e2
i and

∑

i ε
2
i — that have unequal radii. In fact

the radii are given by F1(r) and F2(r) respectively. Once we remove the D7 branes, the Fi

take the following form [34]

F1(r) = eg + b2 e−g, F2(r) = e−g , (2.3)

where g = g(r) whose functional form can be extracted from [34], and b measures the

size of the three-cycle at the tip of the throat. On the other hand, if we remove the D3

branes and put in a single D7 brane, then the background will be close to the one predicted

by Ouyang [25] with F1 ≈ F2 but with a naked singularity at the tip. If we replace the

naked singularity with a nontrivial three-cycle then the local geometry is given in [32]

with F1 6= F2. Thus incorporating all the branes and fluxes, the geometry around the

neighborhood of the D3 and the D7 branes will clearly be (2.1) with F1 6= F2.

To study the issue of supersymmetry, let us take the limit b → 0. In this limit our

background looks like a warped resolved conifold with G3 fluxes and branes. Supersym-

metry will be preserved if we can argue that G3 is a pure (2,1) form with vanishing (1,2),

(3,0) and (0,3) components. Recall that this condition is stronger than the ISD condition

imposed on the G3 fluxes.

The background supergravity equations of motion connect these forms to radii of vari-

ous cycles in the internal manifold (2.1). For example, a direct computation of background

fluxes along the lines of [35] reveals that G3 has both (2,1) as well as (1,2) components

given in the following way:

G3 = (F−1
1 + F−1

2 )Λ2,1 ⊕ (F−1
1 − F−1

2 )Λ1,2 , (2.4)

and would become supersymmetric when F1 = F2 globally. Here we have denoted the (2,1)

and (1,2) forms by Λ2,1 and Λ1,2 respectively. Locally imposing this cancellation implies
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that the regime of interest has G3 ∝ Λ2,1 with vanishing (1,2) piece. However it would be

wrong to conclude that supersymmetry is restored! Only under strict global cancellation

of the (1,2) part could we infer unbroken supersymmetry. From the analysis presented

here (along with the earlier references) it seems difficult to have F1 = F2 everywhere in the

internal space.

Consider now the case when F1 6= F2 but H3 = 0 and F3 6= 0. This could in principle

happen when we are in the far-IR region of the geometry. Now of course the concept of (2,1)

and (1,2) forms makes no sense as G3 is real. Is SUSY restored for our case? The answer

is no because in the presence of F3 and F1 6= F2, a D7 brane breaks all supersymmetry.

Therefore we see that SUSY could in principle be broken by two effects in the background

(2.1): non-primitive G3 fluxes and D7 branes. Both these effects are somehow connected

to having F1 6= F2.

2.2 The superpotential correction

We now return to our starting point, the warped solution, eq. (1.1), where ds2
6 given by

the metric (2.1) and h(r) is the warp factor. To simplify the ensuing analysis, let us first

consider the following limits of the variable defined in (2.1):

b → 0, v = 1, F1(r) ≈ F2(r) =
r2

6
, ε3 → rε3

3
. (2.5)

which gives the conifold limit of the metric. We employ the standard idea that this manifold

can be defined by the complex surface

w1 w2 − w3 w4 = 0 , (2.6)

in four complex dimensions. The complex coordinates wi are related to real coordinates

(r, θ1, θ2, φ1, φ2, ψ) via

w1 = r3/2 e
i

2
(ψ−φ1−φ2) sin

θ1

2
sin

θ2

2
,

w2 = r3/2 e
i

2
(ψ+φ1+φ2) cos

θ1

2
cos

θ2

2
,

w3 = r3/2 e
i

2
(ψ+φ1−φ2) cos

θ1

2
sin

θ2

2
,

w4 = r3/2 e
i

2
(ψ−φ1+φ2) sin

θ1

2
cos

θ2

2
, (2.7)

In terms of these real coordinates, the metric of the conifold can be written explicitly,

ds2
6 = dr2 + r2





1

9

(

dψ +

2
∑

i=1

cos θi dφi

)2

+
1

6

2
∑

i=1

(

dθ2
i + sin2 θi dφ2

i

)



 . (2.8)

As emphasised before, the limit (2.5) provides a good approximation only for intermediate

ranges within a throat for two reasons. First, in this regime G3 is a pure (2,1) form and

the complications due to the other components do not show up; and secondly our results
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Figure 1: A cartoon (taken from ref. [18]) of the configuration of D3 and D7 branes used in the

superpotential calculation.

do not depend on these complications associated with b 6= 0, since all the action will be

taking place away from the bottom of the throat.

The Kähler potential for the moduli of such a configuration is known to be [36]

κ2
4K = −3 log [2σ − c k(wi, w̄i)] , (2.9)

where c = 1
3κ2

4T3 and 2σ = ρ + ρ̄. The quantity k denotes the Kähler potential of the

Calabi-Yau space itself — in our case, the conifold — which is given by [38, 39]

k(wi, w̄i) = r2 =

(

4
∑

i=1

|wi|2
)2/3

. (2.10)

This form can be inferred in various ways, for example by comparing the D3-brane kinetic

term in the present SUGRA description with the expression that results from evaluating

the DBI action in the compactified background.

To follow the explicit D3 dynamics we use the KKLT superpotential, supplemented by

the wi-dependent corrections discussed above, which are computed in ref. [18] for the case

where gaugino condensation occurs on a stack of D7’s which wrap a cycle extending into

the throat, specified by the supersymmetric embedding

4
∏

i=1

wpi

i = µP , (2.11)

as in figure (1). The resulting superpotential can be taken from (1.6) and rewritten as

W = W0 + A(wi)e
−aρ (2.12)

where

A(wi) = A0

(

1 −
∏4

i=1 wpi

i

µP

)1/ND7

(2.13)
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with P =
∑

i pi and ND7 the number of D7 branes. In the special case of ND7 = 1 there is

no gaugino condensation, but the Euclidean D3-brane mechanism [21] could instead apply.

This superpotential can be thought of as a function of the distance between the D3 brane

and the 4-cycle. In principle, there is a connection between the value of a and the volume

of the 4-cycle [18], a = 2T3VΣ4
/ND7, but for the pure conifold this volume diverges, and

would only be cut off by the gluing of the throat to a bulk Calabi-Yau. Since this procedure

is model-dependent, we are free to consider a as a free parameter.

2.3 D3 dynamics

To compute the resulting D3 dynamics we first need to compute the F-term potential,

given by the usual supergravity formula

VF = eκ2

4
K

(

K b̄aDaWDbW − 3κ2
4|W |2

)

(2.14)

where the indices a, b run over the complex fields ρ,wi. It is possible to show that the

inverse Kähler metric, Kab̄, is simple when expressed in block form, where the ρ and wi

fields are written in separate blocks. Defining the volume modulus as R = ρ+ρ̄−ck(wi, w̄i),

we find that Kab̄ has the form

K b̄a =
R

3

(

R + ck,̄ık
ı̄jk,j k,̄ık

ı̄a

kb̄ik,i
1
ck

b̄a

)

(2.15)

where kı̄j is the inverse of ki̄ = ∂i∂k. Furthermore, using the Kähler potential (2.10) we

find that

k,̄ık
ı̄a =

3

2
wa; kb̄ik,i =

3

2
w̄b; k,̄ık

ı̄jk,j = r2 , (2.16)

implying that the combination R + c k,̄ı k
ı̄jk,j appearing in (2.15) is simply ρ + ρ̄.

Using these simplifications, the F-term potential takes the form

VF =
κ2

4

3R2

[

(ρ + ρ̄)|W,ρ|2 − 3(WW,ρ + c.c.) (2.17)

+
3

2

(

W ,ρ̄w
jW,j + c.c.

)

+
1

c
kījW ,̄iW,j

]

=
κ2

4

3R2

[

[

(ρ + ρ̄)a2 + 6a
]

|A|2e−2a(ρ+ρ̄) + 3aW0(Ae−aρ + Āe−aρ̄) (2.18)

−3

2
ae−a(ρ+ρ̄)

(

ĀwjA,j + c.c.
)

+
1

c
kı̄jA,̄ıA,je

−a(ρ+ρ̄)

]

,

which vanishes for a purely constant superpotential (a = Ai = 0). The first line of (2.17) can

be recognized as the KKLT potential before doing any uplifting. The second line in (2.17)

contains the new contributions due to the wi-dependent superpotential corrections. The

KKLT potential would give an AdS minimum at σ0 where DW = 0 and

W0 = −A0e
−aσ0

(

1 +
2

3
aσ0

)

, VAdS = −a2A2
0e

−2aσ0

6σ0
. (2.19)
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The Ouyang embedding

We now focus on the simplest embedding, discussed by Ouyang [25], in which p1 = 1 and

pi = 0 for i > 1. For simplicity we also take ND7 = 1. We show that the superpotential

corrections to VF , denoted by δVF , by themselves do not uplift, because they vanish when

the polar angles of the T 1,1 space take their energetically preferred values, θi = 0. At small

θi, the F -term contribution takes the form2

δVF = M11(θ
2
1 + θ2

2) + M12 cos
(

1
2 ψ̃

)

θ1θ2 + . . . (2.20)

where ψ̃ = ψ − φ1 − φ2. The determinant of the θi mass matrix is

detMθθ = M2
11 − 1

4 cos2
(

1
2 ψ̃

)

M2
12 ∝ 1 − a2c2µ2r (2.21)

when evaluated at the supersymmetric KKLT minimum, eq. (2.19), and when we take

cos(1
2 ψ̃) = ±1, which minimizes the potential for ψ̃.

The following argument shows that for reasonable values of gs, a2c2µ2r0 ¿ 1 (when r

is evaluated at the bottom of the throat), and hence θi = 0 indeed minimizes the F-term

correction to the potential at a value where it vanishes. Suppose RCY is the Calabi-Yau

radius, and r0 = ξ0L ∼ ξ0g
1/4
s /Ms in terms of the AdS curvature scale L and the warp

factor at the bottom of the throat, ξ0 = h
−1/4
0 . Using c ∼ T3/M

2
p ∼ 1/(gsR

6
CY M4

s ),

a = 2π/N for gaugino condensation of an SU(N) gauge theory, and µ2 < R3
CY , we obtain

a2c2µ2r0 <

(

2π

N

)2 ξ0

g
7/4
s (RCY Ms)9

(2.22)

We need RCY Ms À 1 for the validity of the low-energy effective theory, and since strong

warping implies ξ0 ¿ 1, the right-hand-side of (2.22) is generically ¿ 1, unless the string

coupling is taken to be much smaller than its normally assumed range of values. This

shows that the curvature of the potential in the θi directions is positive at θi = 0, and

implies that δVF has a local minimum at the poles of the S3 within the T 1,1, along which

δVF vanishes, for any values of the other coordinates within the conifold. Thus, the D3

brane likes to move to these poles along which the D3-dependence of the superpotential

has no effect on the energy of the itinerant D3 brane.

We can repeat the previous argument for larger values of r to see whether the situation

can change higher in the throat. But even assuming that r ∼ µ2/3 ∼ RCY , the bound (2.22)

is only softened to

a2c2µ2r <

(

2π

N

)2 1

g2
s(RCY Ms)8

(2.23)

Even without the warp factor on the right hand side, it would seem that having a large

enough value of RCY Ms to justify the effective field theory approach makes it impossible

to violate (2.23) without taking gs ¿ (MsRCY )−4 — much smaller than the O(0.1) values

usually entertained.

2We give an explicit formula for the full F -term potential in the next section.
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3. Dilaton corrections and uplifting

Interestingly there is a competing effect which could cause the brane to stabilize at nonva-

nishing polar angles, giving a positive uplifting energy to the brane. To study this we need

to carefully analyse the backreactions of the D7 brane on the geometry. These backreac-

tions will lead to possible running of the dilaton that will help us to study SUSY breaking

effects more precisely.

3.1 D7 brane dynamics, running dilaton and D3 potential

The internal metric (2.1) alongwith the warp factor h captures the effect of the D7 brane on

the background volume e4u, but the D7 brane also distorts the axion-dilaton background.

This distortion is straightforward to work out using Ouyang’s embedding [25]. Denoting

the axion-dilaton by τ we see that both τ and the axion φ̃ can be denoted in the following

way:

τ =
i

gs
+

ND7

2πi
log w1, φ̃ =

ND7

4π
(ψ − φ1 − φ2) (3.1)

where w1 is defined in (2.7) and ND7 is the number of D7 branes. From (3.1) it is easy to

see that the dilaton for our case is given by3

e−Φ =
1

gs
− ND7

2π
log

(

r3/2

µ
sin

θ1

2
sin

θ1

2

)

. (3.2)

which is exactly the same as the one derived in [25].4 This is not surprising because we

used non-trivial D7 monodromies to derive the τ background. However this cannot be

the complete story because of the SUSY-breaking effects that we discussed in section 2.

The two SUSY-breaking effects — existence of non-primitive fluxes and D7 branes — rely

explicitly on the fact that the sizes of the two-spheres (parametrised by (θ1, φ1) and (θ2, φ2))

are unequal. Therefore this should modify the dilaton behavior (3.2) in such a way as to

reflect these changes.

To quantify the changes, let us assume that radii of the two-spheres are related by

F1 − F2 = εf (3.3)

in (2.1) with ε → 0 being a small quantity and f a function which may depend on all

coordinates. For such a small change, the dilaton behavior cannot be too different from

the one given above (3.2). Also since we are almost in the conifold type regime of our

geometry (2.1), the monodromy property of the embedding D7 has to be given by log w1.

The simplest way to keep the monodromy effect of D7 intact is to perturb the behavior of

ND7, as we are changing the sizes of the cycles from the conifold case keeping the axion

3For more general D7-brane configurations, the exact form of the dilaton profile may be different, but the

sign of the logarithmic dependence is expected to be robust, since it encodes the information that adding

flavors makes the the gauge theory less asymptotically free. We thank P. Ouyang for this observation.
4Ref. [25] omits the factor 1/µ in the argument of the log, but it is clear that it is the location of the

D3 brane relative to that of the 4-cycle where the D7 is wrapped which is relevant.
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flux quanta same. Therefore the integrated flux over a cycle, which measures ND7, will

change slightly. Thus our first ansatz would be to have

ND7 → ND7 + δN(ε) (3.4)

where ε is the change in (3.3).5

A little thought tells us that this still cannot be the full story even if ε is very small. To

see a possible contradiction, let us consider the following scenario. Imagine our background

(2.1) comes from a full F-theory set-up. Then there would be multiple seven-branes (not

all local with respect to each other). In such a scenario, there always exists a point in the

moduli space where the string coupling can be made locally constant [19]. In such a case

the global as well as local monodromies all vanish making

e−Φ =
1

gs
(3.5)

with no running dilaton and δN = 0 in (3.4). This background is similar to the background

of [40] because of locally-cancelled seven-brane effects. However [40] still has a running

dilaton because of unequal radii of the two-cycles (3.3). Thus the change (3.4) cannot fully

account for the change in dilaton behavior even for ε → 0. We need something more.

It turns out that the additional corrections to (3.2) can be derived from ref. [40]. In

the absence of D7 branes, Dymarsky et al. claim that the dilaton runs as

e−Φ1 = eε2f2I(r) + O(ε4) (3.6)

where I(r) is a function that is given in [33]. We see that when ε = 0 then e−Φ1 = 1 in

(3.6), δN = 0 and the only “running” will be from the monodromy analysis (3.2). Thus

the actual running of the dilaton for our case will be given by e−Φ + δe−Φ where

δe−Φ = − δN(ε)

2π
log

(

r3/2

µ
sin

θ1

2
sin

θ1

2

)

+
(

eε2f2I(r) − 1
)

+ O(ε4). (3.7)

We remind the reader that this behavior for the dilaton is strictly valid only in the limit

ε → 0 where conifold ansätze could be used. For a finite difference in radius (3.3) the

monodromy behavior of the D7 brane is more involved, and a simple ansatz like (3.4) has

to be corrected with additional terms.

Now using the fact that supersymmetry is spontaneously broken in our background

(1.1) with g̃mn given by (2.1), a D3 brane along spacetime directions x0,1,2,3 should see

a nonzero potential from the Dirac-Born-Infeld (DBI) and Chern-Simons (CS) part of its

5Physically the above formula says that a change in the volume of the cycles of a conifold geometry

to go to the background (2.1) is equivalent to the scenario where we have remained in the conifold set-up

but effectively changed the number of seven-branes. Clearly this will only work when we are close to the

conifold geometry as specified by (3.3). However one immediate advantage of (3.4) is that we can exploit all

the useful properties of the conifold set-up to analyse the system, yet provide solutions for the background

(2.1) in the limit (3.3).
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action. The potential in string frame is given in terms of the warp factor h and the running

dilaton by

δVO = T3

[√
g(e−Φ + δe−Φ) − C0123

]

= T3 h−1δe−Φ (3.8)

where
√

g is the determinant of the metric along x0,1,2,3 directions, C0123 = g−1
s h−1 is the

fourform background when the D3 brane is a probe, and T3 is the tension of the D3 brane.

We see that the potential would vanish when the sizes of the two-spheres are equal, as one

might expect.

We can determine the potential contribution if we know the warp factor h(r) for our

case. It is clear that the leading term of the warp factor will be given by

h(r) =
L4

r4
+ δh(r, θi, ε) (3.9)

where δh is the additional subleading contributions that may depend on θi coordinates and

the difference of the two radii F1 − F2. Providing this contribution does not cancel that

of other bulk fields, it leads to the following contribution to the D3 potential in Einstein

frame:

δVO = −δN(ε)

2π

T3ξ
4
0

R2

(

r

r0

)4

log

(

r3/2

µ
sin

θ1

2
sin

θ1

2

)

+ O(ε2) (3.10)

which must be added to the F-term potential. The existence of this potential is a clear

manifestation that SUSY is broken in our case even after we switch off the gaugino conden-

sate term. It is also clear that the new contribution is minimized at θ1 = θ2 = π, so now

there will be competition between δVF and δVO, resulting in a minimum at some nontrivial

value of θ1 = θ2 = θ.

To finish this section, we need to determine the value of f appearing in the radius

formula (3.3) and the sign of δN(ε). For f , we see that in the analysis of Dymarsky et

al. [40] supersymmetry is already broken at the level of D3 brane without any extra D7

brane. In their analysis

F1(r) − F2(r) ∝ U (3.11)

and so we might expect f in (3.3) to be be related to U . The harmonic function h in [40]

is of the form h = hKS +O(U2) where hKS is the corresponding harmonic function for the

Klebanov-Strassler model. This is also consistent with our choice of harmonic function.

For the sign of δN(ε) we can go to the limit of our geometry (2.1) where the tip is

given by a resolved conifold with the resolution parameter being ε appearing in (3.3). For

this case we expect δN > 0 and so δVO computed above is positive, and is suitable for

uplifting.

3.2 Minimization and uplifting

We can explicitly integrate out the angular degrees of freedom using the fact that δVF and

δV0 take the form

δVF = V1 sin2 1
2θ + V2 sin4 1

2θ (3.12)

δVO = VO log

(

r3/2

µ
sin2 1

2θ

)

+ O(ε2) (3.13)
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where

VO = −δN(ε)

2π

T3 ξ4
0

R2

(

r

r0

)4

(3.14)

V1 =
κ2

4 A2
0 r e−2aσ

3µ2 cR2

(

3 − aµ c
√

r cos 1
2 ψ̃

(

9 + 4 aσ + 6W0

A eaσ
)

)

(3.15)

V2 =
κ2

4A
2
0 r e−2aσ

12µ2 cR2

(

−3 + a c r2 (12 + 8 aσ)
)

(3.16)

Minimizing δVF + δV0 over θ determines the nontrivial angular minimum

sin2
(

1
2θ

)

= min

(

−V1 +
√

V 2
1 − 8V2VO

4V2
, 1

)

(3.17)

This is the extra contribution which will uplift the KKLT potential to a nonnegative vacuum

energy at its minimum.6

The correction δVF + δVO, evaluated at (3.17), must be added to the KKLT potential

VKKLT =
2κ2

4 aA2
0e

−2aσ

R2

(

1 + 1
3aσ + W0

A0
eaσ

)

(3.18)

to obtain the full perturbed potential for the D3 brane and the Kähler modulus. We will

see that the brane experiences a force pushing it to the bottom of the throat, which we

assume to be at r = r0.
7 To study the problem of stabilizing σ and uplifting the potential

at the minimum to nonnegative values, we now restrict ourselves to the potential at r = r0.

It is easy to see that the addition of δVO can be used to raise the minimum of the

potential to positive or zero values, by comparing to the potential which arises in the

KKLT procedure of adding a D3 brane. The effect of a D3 is to add a term

δVD3 =
2ξ4

0T3

R2
(3.19)

to the unlifted potential VKKLT . The correction (3.14) from the D3, has the same form,

except for some additional mild σ-dependence coming from the logarithm, once (3.17) is

imposed. In figure 2 we show the full potential as a function of the Kähler modulus for

the parameters (in MP units) A0 = 1, a = 0.1, W0 = −10−4, r0 = 0.1, c = 10−4, µ = 10,

and the warped brane tension alongwith δN(ε) is tuned to δN(ε)ξ4
0T3 = 7.3× 10−11 to get

a Minkowski minimum at σ0 = 115.8.

Having demonstrated that the minimum can be uplifted to a positive energy, we can

now consider fluctuations of the brane from the bottom of the throat and show that it

is indeed driven to r = r0. We show the potential as a function of r when σ is at its

6Using the KKLT minimization condition W0 = −A0e
−aσ(1+ 2

3
aσ) to simplify the coefficient of cos 1

2
ψ̃,

we again see that the potential is minimized when ψ̃ = 0, as we also showed after eq. (2.21)
7A more accurate treatment would be to redo the above calculations for the deformed Klebanov-Strassler

throat, or more generally for the resolved deformed case (2.1) using the full running dilaton behavior, but

cutting off the throat at r = r0. We have done these calculations for the deformed throat using the running

dilaton ansätze (3.7), but did not see any interesting differences relative to this simpler treatment.
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Figure 2: The uplifted potential as a function of Kähler modulus, for r = r0 (bottom of the

throat).

0 1 2 3 4
r

0

5e-11

1e-10

1.5e-10

V

Figure 3: The potential as a function of r at the stationary value of σ.

minimum-energy value, in figure 3. The fact that the potential turns over and goes to

zero at some value of r is understandable, because of the form of the superpotential (2.13),

which vanishes at some maximum value of r, for fixed angles. We have checked that this is

exponentially close (of order e−aσ) to the value of r at which the potential shown in figure 3

vanishes. Without the competition between the superpotential and the correction (3.10),

we do not get any uplifting effect.
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Potential near the bottom of the throat

For completeness, we note that the form of the full potential for the brane simplifies in

the region r ¿ µ2/3. In this region, VO ∼ r4 while Vi ∼ r in (3.14), (3.16), and we can

approximate (3.17) by Taylor-expanding in V0, giving

sin2
(

1
2θ

)

= −VO

V1
=

|VO|
V1

(3.20)

This results in the potential

V (r) = |VO|
[

1 − |VO|
V1

log

(

r3/2

µ

)]

+ VKKLT (3.21)

where VKKLT depends on r only weakly, VKKLT = −C/R2, since R = (2σ − cr2) and C

is a positive constant. Of course this “weak” dependence was the origin of the severe η

problem of the KKLMMT model, but here the r2 dependence is removed, because the first

term in (3.21) is tuned to go like C/R2 as r → r0, so that the potential is zero at its

minimum. This causes the r2 dependence in R to be subleading to the main r4 behavior

of the potential.

3.3 Slow roll brane-antibrane inflation?

We next explore in a preliminary way whether the potential corrections considered above

can be used to obtain slow roll inflation. First we consider the evolution for small r, where

we have seen that the potential varies for small r like r4. However, the kinetic term for the

inflaton is in this case given by [3, 6]

M2
p

6 c σ

R2
ṙ2 ∼ T3

σ
ṙ2 . (3.22)

In the limit where cr2 ¿ 2σ and R ∼= 2σ, this implies that the canonically normalized field,

ψ, satisfies

ψ

Mp
=

√

3 c r2

σ
<

√
6 . (3.23)

The inequality in (3.23) follows because R can never become negative (being related to the

physical size of the Calabi-Yau), and so r cannot exceed
√

2σ/c.

On the other hand, in order to obtain chaotic inflation with a ψ4 potential, one needs

to ensure that the η parameter, M2
p V ′′/V = 12M2

p /ψ2, is much smaller than unity, with

inflation ending when η ∼ 1 — that is, when ψ =
√

12Mp. This shows that (3.23) is

incompatible with chaotic slow-roll inflation: the field is already rolling too fast even for

the largest values of r.

Next, we consider whether it is possible to inflate from the top of the potential where

it has a local maximum. This is equivalent to asking whether we can use the negative

curvature of our new contribution to the potential to cancel the positive curvature which

comes from expanding an antibrane contribution to the potential (3.19) in r. In the approx-

imation of ignoring the brane-antibrane Coulombic attraction term, there is no difference

between (3.19) and the KKLT potential (3.18) as far as their r-dependence is concerned.

– 17 –



J
H
E
P
0
3
(
2
0
0
7
)
0
2
7

At the local maximum of the potential shown in figure 3, the value of η is

|η| ∼ σ

c

∣

∣

∣

∣

V,rr

V

∣

∣

∣

∣

∼ σ

c r2
m

À 1 (3.24)

where rm ∼ 1 is the value of r at the maximum. To obtain a smaller value of η, one should

choose parameters such that rm becomes larger. However, the condition R > 0 ensures

that r must satisfy the constraint r <
√

2σ/c, and this shows that in the best case η can at

most be of order 1, whereas we need η ∼ 1/Ne with Ne ∼ 60 being the number of e-foldings

of inflation.

It is possible that slow-roll inflation might become possible in more complicated con-

structions, such as if supersymmetry-breaking fluxes are turned on on the D7 branes. In

this case it may be possible to balance the resulting D-term potential, which acts to attract

the D3 brane towards the D7, with the F -term potential considered here. We leave a more

detailed study of the interplay of these D3 forces to future work.

4. Applications to orbifolds M × T 2/Γ

We next specialize to toroidal geometries for which the internal geometry is locally a

product of the 4-manifold, M , and an orbifolded 2-torus, T 2/Γ, with the various D7’s

wrapping M and located at the fixed points, z = zs, of the orbifold. (In this section we

denote the complex coordinates on M by yi and those on T 2/Γ by z, so that the coordinates

on M ×T 2/Γ are {um} = {yi, z}.) For instance for the case of K3×T 2/Z2 we would have

4 D7’s and an orientifold plane — each of which wraps K3 — located at each of 4 fixed

points on T 2/Z2. Our interest in this instance is in the motion of an itinerant D3 brane

within the flat toroidal dimensions.

4.1 The gauge coupling function

The dependence of the perturbed warp factor, h(u), on the D3 position, z, is found by

solving the perturbed supergravity equations in the bulk. Taking h → h0 + δh, we have

∇̃2
uδh(u) = −2κ2

10T3

[

δ6(u − z)√
g̃6

− σb

]

, (4.1)

where σb is the background charge density coming from the adjustments made by all of the

other sources in response to the presence of the D3 in order to maintain the topological

condition that the integration over the left-hand-side vanish for a compact space. The

authors of ref. [18] argue8 that the presence of the σb term implies the existence of a

nonholomorphic contribution to δh

e4u δh = G(um; z) + G(um; z) +
κ2

4T3

3
k(z, z) , (4.2)

8Note that corrections of this form and others discussed later in this section were first worked out in

details in the first paper of ref. [20]. The analysis of ref. [18] that we use here is an alternative technique

using image charges that is consistent with the loop calculations done in ref. [20]. For our study we will

use the image charge method of ref. [18] as it is easy to extrapolate to the orbifold case. The other method

would of course yield the same answer.
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with the last term precisely cancelling the nonholomorphic contribution of δe4u in its

contributions to the gauge coupling function. (Here eu represents the breathing mode,

g̃mn = e2ugmn.) The resulting gauge coupling function is then determined by the holomor-

phic contribution, G(um, z), of the appropriate Green’s function, suitably integrated over

the cycle, Σ, wrapped by the corresponding D7 brane.

With these results the gauge coupling function for the D7 brane located at z = zs on

T 2/Γ becomes fs(ρ, z) = ρ + Fa(z), with the D3 position-dependence being

Fs(z) ∝ T7

∫

Σ
d4y

√
g4 δ

(

e4u h
)

hol

= T7

∫

Σ
d4y

√
g4 G(y, zs; z) . (4.3)

The integration of the 6D Green’s function, G(y, z), over the volume of the 4-cycle Σ simply

converts the result into the appropriate 2D Green’s function. That is, integrating eq. (4.1)

over the 4-cycle and using ∇̃2
u = ∇̃2

y + ∇̃2
z implies 〈δh〉Σ satisfies

∇̃2
z〈δh〉Σ = −2κ2

10T3

ṼΣ

[

δ2(y − z)√
g̃2

− σ2

]

, (4.4)

where we define 〈· · · 〉Σ = Ṽ −1
Σ

∫

d4y
√

g̃4(· · · ), ṼΣ is the volume of the 4-cycle computed

with the metric g̃mn, ∇̃2
z denotes the 2D Laplacian and σ2 =

∫

Σ d4y
√

g̃4 σb. For instance,

for the torus defined by the lattice y ' y + 1 ' y + τ , with complex modulus τ = τ1 + iτ2

and Kähler metric ds2
T

= dy dy, the volume of the 2-torus is VT = τ2 and σ2 = 1/τ2. The

result for 〈δh〉Σ then becomes

〈δh(w,w)〉Σ = −2κ2
4T3τ2

[

(w − w)2

8τ2
+

1

4π
ln

∣

∣

∣
ϑ1 (πw|τ)

∣

∣

∣

2
]

, (4.5)

where w = z − z′ and we use κ2
10 = κ2

4V6 = κ2
4VΣτ2. Again the nonholomorphic part is

proportional to the 2D Kähler potential, k(w,w), which ref. [18] argues is cancelled by the

nonholomorphic contribution of the back-reaction to e4u.

A similar result holds when the two dimensions transverse to the D7 are orbifolded,

obtained by summing eq. (4.5) over the appropriate image points:

〈δh(w,w)〉Σ = −2κ2
4T3τ2

∑

p

[

(wp − wp)
2

8τ2
+

1

4π
ln

∣

∣

∣
ϑ1 (πwp|τ)

∣

∣

∣

2
]

, (4.6)

where wp = z − gp(z
′) and gp(z

′) denotes the action on the D3 brane position, z′, of the

discrete group elements, gp, with the sum running over all of the elements of the group.

For instance, for the orbifold T 2/Z2 defined by identifying points under reflection of a

square torus about the origin, we have g+(z) = z and g−(z) = −z and τ = i, and so

w+ = w = z − z′ while w− = z + z′.

Using this in expression (4.3) gives the following expression for the dependence of Fs(z)

on the D3 position

Fs(z) = C
∑

p

ln
(

ϑ1 [π(zs − zp)|τ ]
)

, (4.7)
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where z denotes the position of the itinerant D3 brane in the orbifold, zp is its image under

the orbifold group elements, and zs is the position of the D7 brane of interest. C denotes

a constant whose detailed form is not crucial in what follows, which is proportional to the

tension of the D3.

4.2 F -term potential: bulk fluxes

Using this in the gaugino-condensation superpotential

W = W0 +
∑

s

As exp
[

−as(ρ + Fs(z))
]

. (4.8)

gives the low-energy expression of the forces on the D3 due to the physics of modulus

stabilization. As we discussed before, the constant W0 appears from the G3 given in

(2.4), and therefore expresses the effects of supersymmetry-breaking amongst the higher-

dimensional fluxes which stabilize some of the moduli, while the exponential term contains

the influence of gaugino condensation (or the like) on various D7 branes, and involves the

dependence on the D3 position due to the back-reaction of the D3 onto the relevant gauge

coupling strengths. The quantities As and as (which are related to A0 and a respectively in

(2.12) and (2.13) for special choices of s) are z-independent constants which are calculable

given the details of the underlying physics.

Periodicity properties

For later purposes it is instructive at this point to record a subtlety regarding the periodicity

properties of the above expressions under the shifts z → z + 1 and z → z + τ which define

the underlying torus, restricting for convenience to the case of later interest: the orbifold

T 2/Z2, with Z2 acting as z → −z. Using the periodicity properties of the Jacobi ϑ-function

listed in the appendix, it can be shown that the quantities

fs(ρ, z) = ρ + α
∑

p

ln
(

ϑ1 [π(zs − z)|τ ]
)

= ρ + α ln
(

ϑ1 [π(zs − z)|τ ] ϑ1 [π(zs + z)|τ ]
)

(4.9)

and X = ρ + ρ − β (z − z)2

τ2
, (4.10)

are invariant under the transformations

z → z + 1 and ρ → ρ

z → z + τ and ρ → ρ + 2iβ (2z + τ) , (4.11)

provided the real constants α and β are related by β = πα. Under this transformation the

Kähler potential also remains well defined, much like the case studied in ref. [3].

This shows that the F -term potential built from the above superpotential is appropri-

ately periodic under shifts of the D3 position, but only if the volume modulus, ρ, also shifts

appropriately. This coupling of the shifting of ρ and z due to the nonperturbative F -term

potential shows that the D3 modulus, z, transforms nontrivially under the classical shift
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symmetry, ρ → ρ + iε, which is broken by anomalies down to a discrete subgroup under

which both ρ and z shift. This bears out the observation [41] that symmetries can require

the KKLT superpotential to depend on fields other than just ρ, although it is interesting

that the the fields which are relevant are in this case the position moduli of the itinerant

D3 rather than charged multiplets living on the branes. This cancellation between shifts

of z and ρ is also noted in ref. [29].

A novel feature of this realization of the symmetry is that it does not involve any fields

beyond ρ and the D3 position modulus, z. In particular it does not involve any charged

chiral fields on the branes, such as is often assumed. In fact, in the limit that the D3

approaches the relevant D7 brane the dependence of W on z has a natural interpretation

from the point of view of the charged fields which become part of the effective 4D field

theory as the mass of the D3–D7 string states become light. This is because when the D3

is sufficiently close to the D7, the mass of these states is nonzero but small enough to be

included into the low-energy 4D theory, through a contribution to the superpotential of

the form

WM =
1

2
µij(z)ϕiϕj (4.12)

where the dependence of µij(z) on the D3 position, z, is calculable and arises because of the

necessity of stretching the D3–D7 strings as the D3 position changes. Furthermore, the U(1)

invariance of eq. (4.12) ensures that µij(z) necessarily has the right transformation property

to be combined into an invariant gaugino-condensation superpotential in combination with

e−aρ [42], along the lines discussed in refs. [41], corresponding to what would be obtained

if the charged fields were integrated out. This shows why it can be possible to achieve

invariance using only the fields z and ρ.

4.3 D term potential: brane fluxes

A D-term potential, eqs. (1.9) and (1.10), can also be generated for these compactifications

if supersymmetry-breaking magnetic fluxes are turned on on some of the D7 branes. This

type of D-term potential arises in particular if the D3 is brought close enough to the relevant

D7 that the D3-D7 string states become light enough to introduce chiral multiplets whose

scalar fields carry the charge of the D7 gauge group.

If we use the form of the Kähler potential, κ2
4∂ρK = −3/X, and the gauge kinetic

function, fs = ρ + Fs(z), suggested by eqs. (4.9) and (4.10), then VD becomes

VD =
∑

s

V0s

fs + fs

[

3 vs

X
+ Ds(ϕ,ϕ)

]2

, (4.13)

where X = ρ+ρ−β(z−z)2/τ2, the constant V0s is inversely proportional to the tension of the

relevant brane, as well as to the volume of the 4-cycle which it wraps. The parameter vs is

proportional to the strength of the flux whose presence on brane ‘s’ breaks supersymmetry.

The scalar fields, ϕ, here denote any light scalars which are charged under the relevant

gauge group and appear in the effective 4D theory. These might include light D3–D7

string states if the D3 brane is sufficiently close to the relevant D7, but would not if the

D3–D7 separation should be too great.
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4.4 Uplifting

The potential (4.13) was proposed in ref. [28] as being a potential source of uplifting to

flat or anti-de Sitter space, instead of using the supersymmetry-breaking anti-D3 brane

used by KKLT. However, as noted in [28] the success of this proposal is model-dependent

inasmuch as it relies on the minimum of the complete scalar potential being at a place

where some of the D-terms are nonzero. As has since been emphasized [41], this requires

at least one of the F -terms to also be nonzero at the relevant minimum.

Both of these features are explicitly manifest in the potential V = VF + VD, if VF and

VD are computed with gaugino condensation and supersymmetric flux breaking occuring

on a single D7 brane. In this case if we take an itinerant D3 brane which is far enough from

the D7 then the only relevant light fields are ρ and z because all of the charged D3–D7

states are too massive to be included in the effective 4D theory (and so Ds(ϕ,ϕ) = 0). In

the absence of a Fayet-Iliopoulos term VD = 0, and at face value VF as computed above is

minimized (and vanishes) as the D3 moves towards the D7 on which gaugino condensation

and flux breaking occurs, because the gauge kinetic function, fs, diverges logarithmically

as z → zs. However, in reality the effective description must change before the D3 and D7

can reach one another because of the breakdown of the approximations used (such as the

necessity to include the D3–D7 states which become light in this limit).

A less trivial situation would arise if a brane configuration could be devised for which

there is a U(1) gauge group in the low-energy theory for which all of the charged chiral mul-

tiplets, ϕ, have the same sign charge. In this case the low-energy theory has a U(1) anomaly,

whose Green-Schwarz cancellation implies the existence of a Fayet-Iliopoulos term [43], as

the following argument shows. In such a case the anomaly-cancelling mechanism implies

that the 4D Lagrangian contains the term v
∫

B∧F , where v is a constant with dimensions

of mass, F = dA and B is the appropriate two-form potential which shifts under the action

of the anomalous U(1) gauge transformation. Together with the B-field kinetic terms, this

dualizes to a Lagrangian of the form

S4dgs = −
∫

d4x

[√−g
1

2
(∂µa − vAµ)(∂µa − vAµ) + c′ aF ∧ F

]

, (4.14)

where a is the Goldstone mode dual to Bµν in four dimensions, and c′ is an appropriate

constant. N = 1 supersymmetry then implies that the corresponding SUSY multiplets A

and ψ only enter the Kähler potential of the low-energy theory through the combination

ψ +ψ− vA within the Kähler function, K, where ψ is the complex scalar whose imaginary

part is a and A is the vector multiplet containing Aµ. This leads to an FI term having the

form ξ = −v∂ψK = 3v/X. Furthermore, eq. (4.14) requires the gauge kinetic term for Aµ

must contain a term linear in ψ.

Of particular interest for us is the case where the relevant scalar a is the imaginary part

of the volume modulus, ρ, since we know that this field generically does appear linearly in

the gauge kinetic functions in type IIB compactifications. Since this field comes from the

component Cµνmn of the RR 4-form field, the 4D Green-Schwarz term can be regarded as
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the low-energy expression of the underlying 7-brane Chern-Simons coupling

Scs ∝
∫

C ∧ F ∧ F , (4.15)

where Fµν is the 4D gauge field for the anomalous U(1) and as above Fmn is the background

flux whose SUSY-breaking presence the FI term represents.

In such a case the D-term potential contains contributions from both the FI term as

well as the contributions of the charged scalars, Ds(ϕ,ϕ). However the relative sign of these

contributions to Ds is dictated by supersymmetry and anomaly cancellation, and is such

that the minimization with respect to ϕ cannot cancel Ds against the FI term, leading to a

minimum at Ds = 0, with a surviving nonzero FI term available to play a role in uplifting.

It would clearly be of considerable interest to realize this picture within a bona fide string

construction.

4.5 Beyond linear backreaction?

The derivation leading to eqs. (1.6), (2.14) and (4.13) for the potentials VF and VD, includes

the D3-brane position through its dependence on the gauge kinetic function, fs = ρ + Fs,

and on the Kähler variable, X, which themselves depend on the D3 position through

eqs. (4.2) and (2.9) (or (4.10)). This dependence arises due to the back-reaction on the

bulk fields of the D3 position, and was computed by linearizing about the D3-independent

background. This leads us to ask whether the domain of validity of the 4D potential must

also be restricted to linear order in F and δX = X − ρ − ρ.

Part of the virtue of having a formulation in terms of 4D supergravity lies in the

various nonrenormalization theorems which such theories enjoy [44, 45]. For holomorphic

quantities like the gauge kinetic function and superpotential, these theorems often allow

the extension of nominally low-order results beyond the domain of their initial derivation.

In particular, since nonrenormalization theorems often restrict the corrections to the gauge

kinetic function to arise only at lowest order, we expect that it may be a good approximation

to keep the full dependence of fs = ρ+Fs on z, without having to linearize results to lowest

order in F .

Similar arguments are more difficult to make for X, however, since corrections to the

Kähler function of the low-energy 4D supergravity are typically not protected from receiv-

ing perturbative corrections. Indeed, it can happen that interesting and qualitatively new

kinds of minima actually do arise for the scalar potential once the leading such corrections

are taken into account [46].

5. Conclusions

Building on the work of [18], we have shown that the KKLT stabilization mechanism, with

the addition of a mobile D3 brane, necessarily involves extra superpotential and dilaton

background corrections. These are a consequence of the same mechanism that stabilizes

the Kähler modulus, either Euclidean D3 branes or gaugino condensation. In a scenario
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like brane-antibrane inflation where D3 branes are involved it is necessary to add these

corrections.

The new corrections depend upon which 4-cycle in the KS-throat is wrapped by the

D7 brane, or stack of D7 branes. In the present work we have focused on a particularly

simple choice of 4-cycle, and the case of a single D7 brane. Our preliminary study of other

choices indicate that they have similar qualitative behavior to the simple case we studied.

A major motivation for studying this system was to determine whether the superpo-

tential correction can be fine-tuned to ameliorate the η problem of brane-antibrane slow

roll inflation à la KKLMMT [3]. A yet more fortunate outcome would have been to find

that our potential supports slow roll inflation by itself, even without an antibrane. We

found that neither of these possibilities could be realized. Either one would have required

large values of r, inconsistent with the requirement cr2 ¿ 2σ, needed in order to keep the

volume of the extra dimensions sufficiently large that the low-energy effective description

can be trusted. It has been suggested that these problems can be overcome in a more

elaborate related background, the full resolved warped deformed conifold [40], although it

would be worth extending their analysis to a case for which all moduli are stabilized.

Finally, we examine a simple toroidal example and exhibit the F and D term poten-

tials which express in the low-energy 4D theory various forces on a mobile D3 brane. We

show how the D3 position modulus can play the role of the field which ensures the invari-

ance of the superpotential under otherwise-puzzling symmetries. We imagine the resulting

potential could be useful for exploring D3–D7 inflationary models in more detail.
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A. Theta functions

We record in this appendix some of the properties of the Jacobi ϑ-functions we use in the

main text. We use the definition

ϑ1(z|τ) = −i

∞
∑

n=−∞

(−)nq(n+ 1

2
)
2

ei(2n+1)z

= 2

∞
∑

n=0

(−)nq(n+ 1

2
)
2

sin
[

(2n + 1)z
]

, (A.1)
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where q = eiπτ . This definition ensures that ϑ1(−z|τ) = −ϑ1(z|τ), as well as the toroidal

periodicity properties

ϑ1(z + nπ|τ) = (−)nϑ1(z|τ)

and ϑ1(z − nπτ |τ) = (−)nq−n2

e2nizϑ1(z|τ) , (A.2)

for any integer n. Similarly, the identity

ϑ′
1(z|τ)

ϑ1(z|τ)
= cot z + 4

∞
∑

n=1

(

q2n

1 − q2n

)

sin(2nz) , (A.3)

where ϑ′
1(z|τ) = dϑ1(z|τ)/dz, implies that near z = 0 we have ϑ1(z|τ) = z + O(z3).

B. 4D anomaly cancellation

In this appendix we confirm the relative sign between the contributions to the D-terms

from the Fayet-Iliopoulos (FI) term and from the charged matter multiplets used in section

4 to study the orbifold limit of the D3/D7 system. We show that in the special case where

all of the matter multiplets share the same charge the resulting potential is minimized by

having the charged scalars vanish, leaving the D3 dynamics governed by the FI term, as

argued in ref. [28].

We start with the 4D U(1) anomaly due to a collection of fermions, all of which carry

the same U(1) charge q. By an appropriate choice of counterterms the variation of the

quantum action under such an anomaly can be written in the form:

δS =
Aq

16π2

∫

d4xωεµνλρFµνFλρ , (B.1)

where ω is the U(1) symmetry transformation parameters and A is a positive calculable

constant.

Within the 4D Green-Schwarz mechanism this anomaly is cancelled by the presence of

a local interaction, given the presence of a 2-form gauge potential, Bµν , with an action

SGS = −
∫

d4x

[

1

12

√−g HµνλHµνλ + kεµνλρBµνFλρ

]

, (B.2)

where the field strength

Hµνλ = ∂µBνλ − κAµFνλ + cyclic , (B.3)

is invariant under the following U(1) gauge transformations

δAµ = ∂µω and δBµν = ωκFµν , (B.4)

and κ is a positive dimensionful constant. This action cancels the anomaly for an appro-

priate choice of k because its variation under the U(1) transformation is

δSGS = −κk

∫

d4x ωεµνλρFµνFλρ . (B.5)
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This cancels the fermionic anomaly provided κk = Aq/(16π2).

The connection to supersymmetric D-terms is best seen once the 2-form field is dual-

ized, leading in 4D to a scalar field, a. This duality is most easily performed by rewriting

the Green-Schwarz action as

SGS = −
∫

d4x

[

1

12

√−g HµνλHµνλ +
2k

3
εµνλρAµHνλρ

+
1

6
a εµνλρ

(

∂µHνλρ +
3κ

2
FµνFλρ

)]

, (B.6)

and regarding the functional integral to be over the fields Hµνλ and a, rather than Bµν .

The equivalence of this form with eq. (B.2) is seen by performing the functional integral

over the field a, which acts as a Lagrange multiplier enforcing the Bianchi identity:

εµνλρ∂µHνλρ = −3κ

2
εµνλρFµνFλρ . (B.7)

This has eq. (B.3) as its local solution, allowing the functional integral over Hµνλ to be

traded for an integral over Bµν , weighted by the action (B.2).

The dual formulation is obtained by performing the functional integrals in the opposite

order, first integrating over Hµνλ to leave an action in terms of the scalar field a. Since the

integral over Hµνλ is Gaussian, it may be performed explicitly, leading to the saddle point

Hµνλ = −εµνλρD
ρa, where the covariant derivative

Dµa = ∂µa − 4k Aµ , (B.8)

is invariant under the U(1) transformations

δAµ = ∂µω and δa = 4kω . (B.9)

The resulting dual action for a then becomes:

S̃GS = −
∫

d4x

[

1

2
DµaDµa +

κ

4
a εµνλρFµνFλρ

]

, (B.10)

which again reproduces the proper anomalous U(1) transformation.

Within a 4D N = 1 supersymmetric context the ‘constants’ k and κ typically depend

on various moduli fields, but the above arguments carry through basically unchanged. In

this case the scalar a resides within a complex chiral scalar multiplet, ρ = κ(z + 2ia), and

so the second term in the action (B.10) requires ρ to appear linearly in the holomorphic

gauge kinetic function: f = ρ + · · · , and so

Sg = −1

4

∫

d4x
[√−g κ z FµνFµν + κaεµνλρFµνFλρ

]

. (B.11)

By contrast, the kinetic term for a and for the charged matter fields, ϕ, arise from

the Kähler function K = K1(ρ + ρ + cV ) + K2(ϕeqV , ϕ), where V denotes the U(1) gauge

multiplet and c = −4κk = −Aq/(4π2) is required in order to ensure that ∂µa and Aµ only
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appear through the invariant combination Dµa = ∂µa− 4kAµ. The Kähler function is also

the source of the D-term contributions
[(

c
∂K1

∂ρ
+ qϕ

∂K2

∂ϕ

)

V =0

V

]

D

= q

(

− A

4π2

∂K1

∂ρ
+ ϕ

∂K2

∂ϕ

)

V =0

D . (B.12)

which show that the relative size of the two contributions is independent of the sign of q.

In particular, using κ2K1 = −3 ln(ρ + ρ) and the ‘minimal’ choice, K2 = ϕeqV ϕ, implies

D ∝ q

(

3A

4π2κ2(ρ + ρ)
+ ϕϕ

)

, (B.13)

in agreement with refs. [41]. Clearly, in the absence of any other ϕ-dependence, the D-term

potential VD ∝ D2 is minimized by ϕ = 0 because of the conditions that κ2(ρ + ρ)/A is

positive.
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R. Blumenhagen, D. Lüst and T.R. Taylor, Moduli stabilization in chiral type-IIB orientifold

models with fluxes, Nucl. Phys. B 663 (2003) 319 [hep-th/0303016];

J.F.G. Cascales and A.M. Uranga, Chiral 4d N = 1 string vacua with D-branes and NS-NS

and RR fluxes, JHEP 05 (2003) 011 [hep-th/0303024].

[27] For T-dual versions see for instance: R. Blumenhagen, L. Görlich, B. Körs and D. Lüst,
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